一、不属于智能交通理念
不属于智能交通理念的概念在当今城市规划和发展中具有重要意义。随着智能交通技术的不断创新和应用,人们对于城市交通系统的要求也在不断提高。智能交通理念旨在通过科技手段优化城市交通流动,提供更便捷、高效、安全、环保的出行方式,实现城市交通系统的智能化和可持续发展。
智能交通理念的核心特点
智能交通理念的核心特点包括智能化、自动化、信息化和网络化。智能化指的是通过先进的技术手段,如人工智能、大数据、物联网等,对城市交通系统进行智能管理和控制。自动化则是指交通设施和设备能够自动感知、响应和调节,实现交通流的自动优化和调控。信息化则是将各类交通信息进行集成、共享和应用,提高交通系统的整体运行效率和用户体验。最后,网络化是指通过互联网和通信技术,实现交通设施、设备和用户之间的信息互通和智能互联,构建智能交通生态系统。
智能交通理念的应用领域
智能交通理念的应用领域涵盖了城市交通管理、公共交通运营、交通安全保障、出行服务优化等诸多方面。在城市交通管理领域,智能交通技术可以帮助城市规划者和管理者实现智能交通信号灯控制、智能交通流监测、智能交通调度等功能,优化城市道路使用效率和交通拥堵状况。在公共交通运营方面,智能交通技术可以提升公交车辆调度、智能票务管理、公交线路规划等功能,提高公共交通的服务水平和运营效率。在交通安全保障方面,智能交通技术可以实现智能监控、智能预警、智能救援等功能,提升交通事故处理效率和安全防范能力。在出行服务优化方面,智能交通技术可以提供出行信息查询、出行路线推荐、多模式联程服务等功能,提升出行体验和便捷度。
智能交通理念的未来趋势
未来,随着智能交通技术的不断进步和应用,智能交通理念将在城市智慧化建设中发挥越来越重要的作用。智能交通系统将向着更加智能化、高效化、绿色化、人性化的方向不断演进。在智能化方面,智能交通系统将逐渐实现全面自动化和智能化管理,实现车路协同、车车协同、路路协同等智能交通模式。在高效化方面,智能交通系统将通过数据分析和优化算法,实现交通流的动态调控和智能导航,提高交通系统整体运行效率和通行能力。在绿色化方面,智能交通系统将推广电动汽车、节能交通设施等绿色出行方式,减少交通尾气排放和环境污染,实现城市交通系统的可持续发展。在人性化方面,智能交通系统将注重用户体验和出行需求,提供个性化定制的出行方案和服务,实现出行的便捷、舒适和安全。
二、不属于因特网应用的是?
不属于internet应用的是数据处理,
因特网的主要应用领域包括电子邮件、远程登录、文件传输、新闻组、万维网、电子公告板等。从使用者角度,因特网的主要应用领域有浏览网络信息、运行网络应用软件、收发电子邮件等。
数据是对事实、概念或指令的一种表达形式,可由人工或自动化装置进行处理。数据经过解释并赋予一定的意义之后,便成为信息。数据处理(data processing)是对数据的采集、存储、检索、加工、变换和传输。
三、智能交通应用国外
在当今社会,随着科技的不断进步与发展,智能交通应用国外已经成为许多国家城市发展的重要方向之一。智能交通系统通过结合先进的技术,提高城市交通效率,减少交通事故,改善居民出行体验,成为现代城市发展中不可或缺的一环。
智能交通带来的变革
智能交通应用的推广,将整个交通系统纳入数字化、智能化管理,实现交通系统各部分之间信息共享,提高城市交通系统整体运行效率。通过智能化技术,城市交通管理部门可以实时监控道路状况、交通流量,进行智能信号灯控制,从而缓解交通拥堵情况,减少交通事故发生率。
国外智能交通应用案例
许多国外城市已经成功应用智能交通系统,取得了显著的效果。例如,美国的旧金山市利用智能交通系统,成功实现了交通信号灯的自适应控制,根据实时交通情况智能调整信号灯的时间,提高了道路通行效率,缓解了拥堵问题。
智能交通应用的未来
随着人工智能技术的不断突破与应用,智能交通系统将迎来更加广阔的发展空间。未来,智能交通系统有望实现更加精准的交通流量预测,优化城市道路规划,提高交通系统智能化水平,为城市居民提供更加便捷高效的出行体验。
结语
智能交通应用国外已经成为现代城市发展的必然趋势,通过引入先进的技术手段,提高城市交通系统的智能化水平,为城市居民创造更好的出行环境。随着科技的不断进步,相信智能交通系统将在未来发展中发挥越来越重要的作用。
四、5g在智能交通的应用分析?
5G作为新一代信息技术,具有大带宽、低时延、广连接的技术特性,北斗系统具有导航、定位、授时和短报文通信等能力。5G与北斗的融合可以实现天地一体、通导一体,促进万物智联与精准协同,将成为新基建迈向数字化、智能化,实现升级改造不可或缺的重要支撑。
五、信息网络在智能交通的应用?
智能交通是将信息、通信、传感等技术综合运用于交通上的成果。长沙的智慧通勤公交、北京的无人驾驶、危险品运输路线规划,都是智能交通应用场景的有益探索。专家表示,发展智能交通,符合我国交通行业转型的现实需求,也顺应了技术发展大势,既回应民生关切,也能牵引产业变革,是我国实现交通运输现代化的必然选择。
六、人工智能在交通领域应用的原理?
随着人工智能、大数据、物联网、云计算等技术的兴起与发展,各类设备、终端、系统平台等都会产生海量的数据,加之传统的处理方式已经逐渐落伍,因此,这些智能便捷化的技术便逐渐渗透到各行各业中。像交通行业随着交通路线、卡口的增多及大规模联网,这就汇集了海量车辆通行记录信息,如果单纯地延续传统的数据统计模式来进行分析和事件处理,将会有大量数据及信息得不到及时反馈与解决。
而利用人工智能、大数据、物联网、云计算等技术,可实时分析城市交通流量,调整红绿灯间隔,缩短车辆等待时间,提升城市道路的通行效率。城市级的人工智能大脑,实时掌握着城市道路上通行车辆的轨迹信息,停车场的车辆信息,以及小区的停车信息,能提前半个小时预测交通流量变化和停车位数量变化,合理调配资源、疏导交通,实现机场、火车站、汽车站、商圈的大规模交通联动调度,提升整个城市的运行效率,为居民的出行畅通提供保障。
本文我们将浅谈一下人工智能、大数据、云计算、物联网等技术将会给交通行业带来哪些便利与变革:
1.数据资源整合
由于我国线路众多,与交通相关的绝大多数部门都有自己的信息化平台,并产生着海量数据,但是现在的每个部门及单位内的系统平台大都是独立的,信息与数据也大都不互通互联,这就造成数据资源的散乱与不共享。现在,由于云计算的深入应用,交通行业也开始了数据上云、资源整合,这将为交通行业的管理、规划、运营与服务提供有利的支撑。
比如EasyNVR+EasyNVS的结合就已经实现了交通上云的转变,在某省高速集团撤销省界站项目的视频云服务项目中,已成功接入设备2000+路,借助于视频大数据分析加速案件处理效率。
2.智能分析与决策
由于交通行业的卡口、监控视频、交通事故、公交线网、车辆定位、车辆运营等模块众多、数据体量大,如果继续采用之前的统计分析来辅助决策,就会增加时间、人力、物力等成本。现在基于大数据计算、人工智能辅助决策的方式来处理交通行业的事件,会达到及时、有效的处理,并且可以及时追溯事件的发生,为未来避免相同事件的发生提供决策及依据。
3.车辆统计与识别
目前车辆统计与识别是交通行业最为热门的应用,虽然现在的识别度不是很高,但是随着人工智能、深度学习的应用,这一情况将会得到很大的改善。目前EasyCVR已经实现了车牌识别,在未来也将会在持续在智能分析上发力。借助智能视频分析与识别技术,交通行业能统计车流量、车牌识别、车型检测等,利于交通行业实现公路交通的全方位监控、巡逻;便于疏通交通堵塞;利于交通事件的追查与溯源。
4.自动处理与车辆跟踪
基于智能视频识别技术与大数据计算能力,可以实现除车流量统计、车辆识别,还可以根据提取出的车辆信息结合GIS或卫星定位技术,用来进行车辆的跟踪。并在高速出入口设置自动收费系统,实现自动化、智能化的业务处理,便于车辆快速通行。
5.远程指挥调度
基于车辆跟踪技术,一旦发生追捕、急救等事件,交通部门可以进行应急预案,通过交通平台的数据互联互通,实现急救与抓捕的人员、车辆调度,并及时做好疏通与运营。
在AI智能分析、大数据、云计算、物联网等新技术给各行各业带来的变革与创新会一直驱动着我们推陈出新,而TSINGSEE青犀视频所具备的智能分析平台EasyGBS、EasyCVR等也将适应时代的发展,与新技术结合,这些新兴技术在交通行业的应用也远不止于此,未来在交通信号控制、智能联网汽车、智能公交车等领域也会实现新的发展与突破。TSINGSEE青犀视频智能分析平台可以为众多行业场景下的物联网设备提供安全、可靠、高效的视频连接、存储、智能应用服务,为众多的行业用户提供PaaS级的智能化视频云平台服务。
七、ai的实际应用?
人工智能的实际应用包括:
1、人脸识别;
2、机器翻译;
3、文本编辑器或自动更正;
4、搜索和推荐算法;
5、聊天机器人;
6、数字助理;
7、社交媒体;
1、人脸识别 人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
2、机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(Neural Machine Translation,NMT),该技术当前在很多语言上的表现已经超过人类。随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。
3、文本编辑器或自动更正
当您键入文档时,有一些内置或可下载的自动更正工具,可根据其复杂程度检查拼写错误、语法、可读性和剽窃。
在您流利使用英语之前,一定已经花了一段时间来学习语言。同样,人工智能算法还使用机器学习、深度学习和自然语言处理来识别语言的不正确用法并提出更正建议。
语言学家和计算机科学家一起工作,以教授机器语法,就像在学校一样。机器被提供了大量高质量的语言数据,这些数据以机器可以理解的方式进行组织。因此,即使您不正确地使用单个逗号,编辑器也会将其标记为红色并提示建议。
下次让语言编辑器检查文档时,请知道您使用的是人工智能的许多示例之一。
4、搜索和推荐算法
当您想看自己喜欢的电影或听歌或在网上购物时,您是否注意到建议的内容完全符合您的兴趣?这就是人工智能的功能。
这些智能推荐系统可从您的在线活动中了解您的行为和兴趣,并为您提供类似的内容。通过不断的培训,可以实现个性化的体验。数据在前端(从用户)收集,存储为大数据,并通过机器学习和深度学习进行分析。然后,它可以通过建议来预测您的喜好,而无需进行任何进一步的搜索。
5、聊天机器人
作为一个客服,回答问题可能会很费时。一个人工智能的解决方案是使用算法来训练机器,通过聊天机器人来迎合客户的需求。这使得机器能够回答常见问题,并接受和跟踪订单。
八、plc的实际应用?
PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。其实主要就是工业的顺序控制,第一步第二步干什么等等 ,实现自动化控制,免去许多继电器,节省设备的空间,在电脑上就能更改电路。
民用的就电梯和大型灯光等是PLC控制,还有就是比如家里的电冰箱,洗衣机呀,微波炉等等,都有plc的应用!!
九、rna的实际应用?
与转录后加工有关;
2、和蛋白质生物合成有密切关系:如tRNA(转运RNA), rRNA(核糖体RNA), mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所;
3、部分病毒、类病毒中的遗传信息载体;
4、催化生化反应,即具有酶的活性,这类RNA被称为核酶;
5、在基因表达调控中起到重要作用。
十、声学的实际应用?
声学检测不能说是一个完全崭新的技术,只不过因为环境声音种种复杂的特性,导致在过去这些年的实际应用中,发展速度远不及视频。
声音信号具有丰富的信息量,在很多视觉、触觉、嗅觉不合适的场合下,具有独特的优势。声音信号通常被认为与振动信号具有较大的相关性,但声音信号具有非接触性,避免了振动信号数据采集的困难。基于一般音频/环境声的CA(计算机听觉Computer Audition)技术属于AI在音频领域的分支,直接面向社会经济生活的各个方面,在医疗卫生、制造业、交通运输、安防、仓储、农林牧渔业、水利、环境和公共设施管理业、建筑业、采矿业、日常生活、身份识别、军事等数十个领域具有众多应用,是一门非常实用的技术.目前该领域在国内外已开始起步发展,但在许多研究和应用领域仍接近于空白,具有无限广阔的发展前景。
接下来将逐一举例说明!
· 金属加工机械制造——刀具状态是保证切削加工过程顺利进行的关键,迫切需要研制准确、可靠、成本低廉的刀具磨损状态监控系统。切削声信号采集装置成本低廉,结构简单,安放位置可调整。基于它的检测技术,信号直接来源于切削区,灵敏度高,响应快,非常适用于刀具磨损监控。可利用金属切削过程中的声音辐射检测工具的状态,即锋利、磨损、破损。以低频和高频带的频谱成分作为特征,可以很容易地区分锋利和磨损。
· 轴承、齿轮和传动部件——旋转机械(轴承、齿轮等)在整个机械领域中有着举足轻重的地位,发生故障的概率又远远高于其他机械结构,因此对该类部件进行状态检测与故障诊断就尤为重要。对于传统的振动传感器需要拆分机器、不易安装的缺点来讲,其可通过在整机状态下检测特定部位的噪声来判定轴承与齿轮等是否异常,可以说是非常省时省力又快捷了。
· 包装专用设备——基于声信号的瓶盖密封性检测方法,声信号的产生由电磁激振装置对瓶子封盖激振产生,由麦克风采集。基于声信号实现啤酒瓶密封性快速检测。瓶盖受激发后产生受迫振动,其振动幅度和振动频率与瓶盖的密封性存在一定的关系。瓶内压力增高时,若瓶盖密封性好,其振动频率就高,振幅就小;反之,若密封性差,振动频率就比较低,振幅也比较大。以此来判断包装的密封性,保障了商品包装的合格率。
· 电气机械和器材——电机是用于驱动各种机械和工业设备、家用电器的最通用装置。电机有很多种,如同步电机 、直流电机 、感应电机。为保证其安全稳定运行,常常需要工作人员定期检修、维护。电机在发生故障时,维护人员听电机发出的声音,以人工方式判断故障的类型,耗费大量人力,而且无法保证及时检测到故障,基于声信号的声纹识别系统将提取的音频特征与某一类型的故障联系起来,可以识别出电机异响及各种类型的故障,如线圈破碎和定子线圈短路等。
· 纺织业——细纱断头的低成本自动检测一直是纺纱企业急需解决的一个问题。利用定向麦克风采集5个周期的钢丝圈转动产生的声信号。正常纺纱时的声信号都具有分布均匀的5个较高波峰,而发生纺纱断头时采集到的声信号不具有该特点。按照此标准即可判断纱线是否发生断头以减少成本损失。
· 黑色及有色金属冶炼和压延加工业——对金属和非金属粘接结构施加微力,在频域提取与粘接有关的声信号的特征用于后续模式识别。撞击非晶合金产品使其产生振动,并采集发出的声信号,以声信号衰减时间的长短作为特征,判断产品的合格性,可以准确地检测出非晶合金产品内部是否存在收孔或裂纹等缺陷。采集氧化铝熟料与滚筒窑撞击所产生的声音,通过分析频谱、幅度等数据区别出熟料的3种状态:正常、过烧、欠烧,进行自动质量检测。采集成品熟料与滚筒窑撞击所产生的声音,经滤波、频谱分析等处理后,对烧结工序中的异常状态进行判断并报警。
· 非金属矿物制品业——热障涂层是一层陶瓷涂层(Thermal Barrier Coatings TBC),沉积在耐高温金属或超合金的表面,对基底材料起到隔热作用,使得用其制成的器件(如发动机涡轮叶片)能在高温下运行。失效检测有4种典型的失效模式:表面裂纹、滑动界面裂纹、开口界面裂纹、底层变形,基于声信号进行失效检测。提取冲击声的域特征及听觉感知特征,通过模式识别研究基于冲击声的声源材料自动识别。
· 农副食品加工业——在鸡蛋、鸭蛋等的加工过程中,从生产线上分选出破损蛋是一道重要工序。国内主要依靠工人在灯光下观察是否有裂纹,或转动互碰时听蛋壳发出的声音等方法来识别和剔除破损鸡蛋。这种方法效率低下,精度差,劳动强度大,成本高。研究自动化的禽蛋破损检测方法意义重大。经验表明,好蛋的蛋壳发出的声音清脆,而破损蛋的蛋壳发出的声音沙哑、沉闷,这使得基于声音音色进行蛋类质量判别成为可能。以鸡蛋赤道部位的4个点作为敲击位置,采集鸡蛋的声信号。在实际环境中,用音频分离或降噪技术。从风机噪声环境中分离提取蛋鸡声音,根据采集音频加以分析定位,便可以轻松识别破损蛋。
· 机器人制造——机器人需要对周围环境的声音具有听觉感知能力。AED(Audio event detection 音频事件检测)在技术角度也属于CA,但专用于机器人的各种应用场景:面向消费者的服务消费机器人,在室内环境中识别日常音频事件;面向灾难响应的特殊作业机器人,识别噪声环境中的某些音频事件,并执行给定的操作;面向阀厅智能巡检的工业机器人,对设备进行智能检测和状态识别。
还有很多应用场景,篇幅有限,就暂且不一一列举了。