316科技

316科技

第一个提出暗物质的科学家是?

316科技 299

一、第一个提出暗物质的科学家是?

1932年,荷兰天文学家奥尔特(提太阳系最外层出奥尔特云猜想的天文学家),第一次提出了“暗物质”的概念。

此后,很多天文学家也都陆续加入了暗物质研究的队伍之中。

时间进入到21世纪,对于暗物质的研究越来越深入,虽然暗物质看不到、摸不到,但是科学家们已经普遍相信,宇宙中存在着暗物质。

二、第一个提出人工智能的科学家?

1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。

从1956年正式提出人工智能学科算起,50多年来,取得长足的发展,成为一门广泛的交叉和前沿科学。总的说来,人工智能的目的就是让计算机这台机器能够像人一样思考。

三、第一个提出日心说的科学家是谁?

通常认为完整的日心说宇宙模型是由波兰天文学家哥白尼在1543年发表的《天体运行论》中提出的,实际上在西方公元前300多年的阿里斯塔克和赫拉克里特就已经提到过太阳是宇宙的中心,地球围绕太阳运动。阿里斯塔克斯(Aristarchus,约公元前310年-约公元前230年),是人类历史上有记载的首位提倡日心说的天文学者,是古希腊时期、也是人类歴史上有记载的最伟大的天文学家,数学家。他生于古希腊萨摩斯岛。他将太阳而不是地球放置在整个已知宇宙的中心,他是人类歴史上有记载的最早期的日心说的提倡者之一。但是在当时的古希腊、他的宇宙观和杰出的智慧并未能被当时的人们所理解,并被亚里士多德和托勒密的才华之光芒所掩盖,直到16世纪(约1760年以后),哥白尼才很好地发展和完善了阿里斯塔克斯的宇宙观和理论。

四、科学家提出的统计方法?

1、大量观察法2、统计分组法3、综合指标法4、时间数列分析法5、指数法6、抽样推断法7、相关分析法。

五、提出基因的科学家是谁?

基因

1909年约翰逊提出的概念

基因(遗传因子)是遗传变异的主要物质。支配着生命的基本构造和性能。储存着生命孕育、生长、凋亡过程的全部信息,通过复制、转录、表达,完成生命繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、病、老、死等一切生命现象都与基因有关。它也是决定生命健康的内在因素。因此,基因具有双重属性:物质性和信息性。

六、提出“行星模型”的科学家是?

原子结构的行星模型吗?提出原子结构行星模型的科学家是英籍新西兰物理学家欧内斯特·卢瑟福(1871年8月30日-1937年10月19日)。1911年,卢瑟福根据α粒子散射实验现象提出原子核式结构模型,即行星模型。行星模型的主要内容有:

①原子的大部分体积是空的  

②在原子的中心有一个很小的原子核 

③原子的全部正电荷在原子核内,且几乎全部质量均集中在原子核内部。带负电的电子在核空间进行绕核运动。

七、人人都是科学家谁提出?

天文学家卡尔.萨根曾经说过:每个人在他们幼年的时候都是科学家,因为每个孩子都和科学家一样,对自然界的奇观满怀着好奇和敬畏。所以答案是卡尔.萨根。

卡尔·萨根

美国天文学家、天体物理学家

卡尔·萨根,即卡尔·爱德华·萨根(Carl Edward Sagan,1934年11月9日-1996年12月20日),美国天文学家、天体物理学家、宇宙学家、科幻作家,和非常成功的天文学、天体物理学等自然科学方面的科普作家。行星学会的成立者。

小行星2709、火星上的一个撞击坑以他的名字命名。

八、研究机器人的科学家?

被称为机器人学家或机器人学专家。他们研究机器人的设计、制造、控制和运动学等方面,致力于开发新的人工智能技术,使机器人能够更灵活、更高效地执行任务。

机器人学家通常拥有机械工程、计算机科学、控制论、人工智能等相关领域的背景和技能。他们使用数学模型、计算机模拟和实验等方法来研究机器人的性能和行为,并开发出新的机器人应用和技术。

在学术界和工业界,机器人学家都是非常重要的角色。他们为机器人技术的发展和应用做出了巨大的贡献,推动了人类社会的进步和发展。

九、微循环是哪位科学家提出的?

微循环是由丹麦的科学家科罗格在1920年发现的,他非常兴奋地把这个消息公布到全世界,让全球100多个国家医学权威共同研究。半年之后,科罗格先生得到了两项成果认证。因为经过全球医学界的研究,认为微循环和人体的健康、人体的寿命、人体的疾病、人体的生命有着息息相关、密不可分的重要关系。

科罗格因为这一项重要发现,获得了当年的诺贝尔医学奖,科学家们为了警示后人重视微循环的重要性,又专门给微循环起了第二个名字,把它叫做人类的第二心脏。

十、提出宇宙模型的科学家有哪些?

在这一年,一个默默无闻的前苏联数学家弗利德曼,应用不加宇宙项的场方程,得到一个膨胀的、或脉动的宇宙模型。弗利德曼宇宙在三维空间上也是均匀、各向同性的,不过,它不是静态的。这个宇宙模型随时间变化,分三种情况。第一种情况,三维空间的曲率是负的;第二种情况,三维空间的曲率为零,也就是说,三维空间是平直的;第三种情况,三维空间的曲率是正的。前两种情况,宇宙不停地膨胀;第三种情况,宇宙先膨胀,达到一个极大值后开始收缩,然后再膨胀,再收缩……因此第三种宇宙是脉动的。弗利德曼的宇宙最初发表在一个不太著名的杂志上。后来,西欧一些数学家物理学家得到类似的宇宙模型。著名科学家爱因斯坦知道这些膨胀或脉动的宇宙模型后,很激动。相比之下,他觉得这比自己的模型做得好,应该放弃,而弗利德曼的模型才是准确的宇宙模型。

并且,爱因斯坦还作出声明,称自己在广义相对论的场方程上加宇宙项是很错误的,场方程不应该包含宇宙项,而更应该是原来的老样子。不过,宇宙项就像“天方夜谭”中从瓶子里放出的魔鬼,再也收不回去了。后人并没有听取爱因斯坦的意见,而是继续讨论宇宙项的意义。因此,现在的广义相对论的场方程分为两种,其中一种不含宇宙项,而另一种含宇宙项,这些都在专家们的应用和研究中。

大约是在1910年左右,有些天文学家就发现很多星系的光谱有红移现象,个别星系的光谱还有紫移现象。这些现象可以用多谱勒效应来解释。远离我们而去的光源发出的光,我们收到时会感到其频率降低,波长变长,并出现光谱线红移的现象,也就是光谱线向长波方向移动的现象。反之,向着我们迎面而来的光源,光谱线会向短波方向移动,出现紫移现象。这种现象与声音的多普勒效应相似。很多人可能都有过这样的感觉:迎面而来的火车,它的鸣叫声特别尖锐刺耳,远离我们而去的火车其鸣叫声则明显迟钝。这就是所谓声波的多普勒效应,面对扑面而来的声源发出的声波,人会感到它的频率增高,而渐渐远离我们的声源发出的声波,人则会感到它的率下降。

假如现在认为所谓星系的红移、紫移,都是多普勒效应,那么大部分星系都是在远离我们,只有个别星系向我们靠近。随后进行的研究中我们发现,那些个别向我们靠近的紫移星系,都在我们自己的本星系团中(我们银河系所在的星系团称本星系团)。其实本星系团中的星系,大部分红移,小部分紫移;但是其他星系团中的星系就全部是红移了。

在1929年的时候,美国的天文学家哈勃对当时的一些观测数据进行了总结,提出一条经验规律,河外星系(即我们银河系之外的其他银河系)的红移大小正比于它们离开我们银河系中心的距离。因为多普勒效应的红移量和光源的速度是成正比的,因此,上面所说的定律也可以表述为:河外星系的退行速度和它们离我们的距离成正比:

V=HD

在这个公式中,V是河外星系的退行速度,D是它们到我们银河系中心的距离。这个定律称为哈勃定律,比例常数H称为哈勃常数。根据哈勃定律来分析,全部的河外星系都在逐渐远离我们,并且离我们越遥远的河外星系,离开得速度也会更快。在哈勃定律所反映的规律和宇宙膨胀理论正好相符。个别星系的紫移也能够这样来说明,本星系团内部各星系要围绕它们的共同重心转动。所以,一定会有一少部分星系在某些时间内向我们的银河系靠近。不过,此种紫移现象和宇宙整体的膨胀没有关系。

分析一下就可以知道,哈勃定律在很大程度上支持了弗利德曼的宇宙模型。但是,假如查看一下当年哈勃得出定律时所用的数据图,人们会感到惊讶。在距离与红移量的关系图中,哈勃标出的点并不集中在一条直线附近,而是比较分散的。哈勃怎么敢于断定这些点应该描绘成一条直线呢?一个可能的答案是,哈勃抓住了规律的本质,抛开了细节。另外一个可能性就是,哈勃已经知道当时的宇宙膨胀理论,因此大胆认为自己的观测与该理论一致。以后的观测数据也更加精确,数据图中的点也越来越集中在直线附近,哈勃定律最终被大量实验观测所确认。

上一个下一篇:最强大脑陈岁最终排名?

下一个上一篇:返回栏目