一、火车的发展经历了哪些过程?火车的发展经历了?
火车的发展经历了以下几个重要的历程和阶段:
1. 蒸汽火车时代:蒸汽火车是最早的火车形式。在18世纪末到19世纪初,蒸汽机的发明使得蒸汽火车成为可能。著名的蒸汽火车发明家乔治·斯蒂芬森在1814年建造了第一辆实用的蒸汽火车,并于1825年完成了世界上第一条公共铁路——斯托克顿和达灵顿铁路。
2. 电力火车时代:19世纪末,电力火车开始兴起。1881年,法国建立了世界上第一条电力化铁路,使用直流电力。20世纪初,交流电的使用使得电力火车的运行更加高效和可靠。
3. 高速铁路时代:20世纪后期,高速铁路开始发展。1964年,日本推出了世界上第一条商业化运营的高速铁路——新干线。从此,高速铁路成为了各国铁路发展的重要方向,许多国家纷纷建设高速铁路系统。
4. 磁浮列车时代:磁浮列车是一种基于磁悬浮技术的新型火车。磁浮列车不接触轨道,而是通过磁场悬浮和推进,因此具有更快的速度和更平稳的运行。德国在1984年建成世界上第一条商业化运营的磁浮列车线路。
5. 高铁时代:高铁是指符合一定技术标准的高速列车系统。21世纪以来,高铁的发展进入了一个新的阶段。中国成为了全球高铁建设的领军者,建设了世界上最长、最快的高铁网络。高铁的发展已经将许多城市连接到了一起,提供了便捷和高效的城际交通方式。
以上是火车发展的主要历程和阶段。随着科技的进步和需求的变化,火车可能会继续在速度、安全性和定点性方面进行改进和创新。
二、机器人发展经历了哪几个阶段?
经过近百年来的发展,机器人已经在很多领域中取得了巨大的应用成绩,其种类也不胜枚举,几乎各个高精尖端的技术领域都少不了它们的身影。在这期间,机器人的成长经历了三个阶段。
第一个阶段中,机器人只能根据事先编好的程序来工作,这时它好像只有工作的手,不懂得如何处理外界的信息——如果让这样的机器人去做会损害它自身的工作,它也一定会去做。
第二个阶段中,机器人好像有了感觉神经,具有了触觉、视觉、听觉、力觉等功能,这使得它可以根据外界的不同信息做出相应的反馈。
第三个阶段的机器人不仅具有多种技能,能够感知外面的世界,而且它还能够不断自我学习,用自己的思维来决策该做什么和怎样去做。
三、广播的发展历史经历了些什么?
广播的发展历史:诞生 1906年圣诞节前夜,美国的费森登和亚历山德逊在纽约附近设立了一个广播站,并进行了有史以来第一次广播。广播的内容是两段笑话、一支歌曲和一支小提琴独奏曲。这一广播节目被当时四处分散的持有接收机的人们清晰的收听到了。 1908年,美国的弗雷斯特又在巴黎埃菲尔铁塔上进行了一次广播,被那一地区所有的军事电台和马赛的一位工程师所收听到。 1916年,弗雷斯特又在布朗克斯新闻发布局的一个试验广播站播放了关于总统选举的消息,可是在当时只有极少数的人能够收听这些早期的广播。 真正的广播诞生于20世纪20年代。 世界上第一座领有执照的电台,是美国匹兹堡KDKA电台,于1920年11月2日正式开播。 中国的第一座广播电台建于1923年1月,由美国的奥斯邦创办,属于中国无线电广播公司的广播台,首先在上海播出。 1926年,中国出现第一家自办广播电台——哈尔滨广播电台,由刘瀚创办。 1928年,中国国民党北伐成功,在南京创办“中国国民党中央执行委员会广播无线电台”呼号为XKM。 1939年,国民党在重庆创办对外广播台——“中国之声”(voice of China)。 1940年12月,中国人民广播事业创建,即中央人民广播电台的前身——延安新华广播电台。 广播的优势是对象广泛,传播迅速,功能多样,感染力强;短处是一瞬即逝,顺序收听,不能选择,语言不通则收听困难。发展 由于无线电的广泛使用以及人们对于大功率发射机和高灵敏度电子管接收机技能的熟练掌握,使广播逐渐变成了现实。 1919年,苏联制造了一台大功率发射机,并于1920年在莫斯科开始试验性广播。 1920年6月15日,马可尼公司在英国举办了一个以梅尔芭太太主演的“无线电--电话”音乐会,远至巴黎、意大利、挪威,甚至在希腊都能清晰的收听到。这就是广播事业的开始。 1920年11月2日,美国在康拉德的指导下,威斯汀豪斯公司广播站KDKA开始广播,首次播送的节目是哈丁-科克斯总统选举,在当时,这事曾轰动一时。 1920年12月22日,德国的柯尼武斯特豪森广播电台首次播送了器乐演奏音乐会。 1922年11月14日,伦敦ZLO广播站正式开始在英国广播每日节目,该站在1927年改为英国广播有限公司,即BBC。 1922年法国埃菲尔铁塔也正式开始播音。 1927年止,美国国内已拥有737个广播站。 这一时期,广播站如雨后春笋在各国中相继涌现。当时,在欧洲广播已被视为一个庞大的通信工具。以后,全世界的广播事业不断发展,现已逐步形成全球性的广播网。
四、ei经历了什么的发展进程?
EI美国工程信息公司编制出版是美国工程索引的简称,于1884年创立,到2021年已经经历了137年的发展历史。是世界文献史上公认的最为悠久的工程技术文献检索工具。同时EI也是国际三大著名检索工具之一。信息库涵盖了世界工程技术领域中影响最为深远的研究论文和研究成果,代表了当今科技水平发展的最尖端力量。
EI发展历程:
①创办初,月刊、年刊的印刷本(Compendex),1884年至今。
② 70年代,电子版数据库(Ei Compendex), 并通过Dialog等大型联机系统提供检索服务。
③ 80年代,光盘版(CD-ROM)形式(Ei Compendex)。
④ 90年代,提供网络版数据库(简称CPX Web), 推出了工程信息村(Engineering Village:Ei Compendex + PageOne);
1999年,中国18所高等学校联合购买网络版数据库的使用权,镜像在清华大学图书馆;
2000年8月,Ei推出Engineering Village 2新版本,于2000年底出版。
五、瓷器的发展经历了几大阶段?
夏、商、周朝时期的陶瓷文化 :带釉的硬陶在这个时期已经出现.隋唐朝时期的陶瓷文化:隋朝在瓷器烧制上,有了新的突破,不但有青瓷烧造,白瓷也有很好的发展,发展到唐代,不但釉药发展成熟,火烧温度能达到摄氏一千度以上,所以我们说唐代是真正进入瓷器的时代.唐代最著名的窑为越窑与邢窑.明清朝时期陶瓷文化 :明代开始,窑址都趋於集中在景德镇,无论官窑或民窑都偏向於彩绘瓷器,宋瓷前都以单色釉为主,而明代后走入了彩绘世界,清朝中国瓷器可谓登峰造极.数千年的经验,加上景德镇的天然原料,督陶官的管理,清朝初年的康熙、雍正、乾隆三代,因政治安定,经济繁荣,皇帝重视,瓷器的成就也非常卓越,皇帝的爱好与提倡,使得清初的瓷器制作技术高超,装饰精细华美,成就不凡,是悠久的中国陶瓷史上最光耀灿烂.
六、雷达经历了怎样的发展历史?
雷达是现代战争必不可少的电子装备。它不仅应用于军事,而且也应用于国民经济(如交通运输、气象预报和资源探测等)和科学研究(如航天、大气物理、电离层结构和天体研究等)以及其他一些领域。发展简史 雷达的基本概念形成于20世纪初。但是直到第二次世界大战前后,雷达才得到迅速发展。
早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。
1922年,意大利G.马可尼发表了无线电波可能检测物体的论文。
美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。
1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。
30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。
1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。
1938年,英国已在邻近法国的本土海岸线上布设了一条观测敌方飞机的早期报警雷达链。
早期报警雷达链 第二次世界大战期间,由于作战需要,雷达技术发展极为迅速。
就使用的频段而言,战前的器件和技术只能达到几十兆赫。
大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。
这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。
1939年,英国发明工作在3000兆赫的功率磁控管,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。
大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。
在高炮火控方面,美国研制的精密自动跟踪雷达SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。
40年代后期出现了动目标显示技术,这有利于在地杂波和云雨等杂波背景中发现目标。
高性能的动目标显示雷达必须发射相干信号,于是研制了功率行波管、速调管、前向波管等器件。
50年代出现了高速喷气式飞机,60年代又出现了低空突防飞机和中、远程导弹以及军用卫星,促进了雷达性能的迅速提高。
60~70年代,电子计算机、微处理器、微波集成电路和大规模数字集成电路等应用到雷达上,使雷达性能大大提高,同时减小了体积和重量,提高了可靠性。
在雷达新体制、新技术方面,50年代已较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术等;60年代出现了相控阵雷达;70年代固态相控阵雷达和脉冲多普勒雷达问世。
在中国,雷达技术从50年代初才开始发展起来。中国研制的雷达已装备军队。
中国已经研制成防空用的二坐标和三坐标警戒引导雷达、地-空导弹制导雷达、远程导弹初始段靶场测量雷达和再入段靶场测量与回收雷达。
中国研制的大型雷达还用于观测中国和其他国家发射的人造卫星。
在民用方面,远洋轮船的导航和防撞雷达、飞机场的航行管制雷达以及气象雷达等均已生产和应用。
中国研制成的机载合成孔径雷达已能获得大面积清晰的测绘地图。
中国研制的新一代雷达均已采用计算机或微处理器,并应用了中、大规模集成电路的数字式信息处理技术,频率已扩展至毫米波段。工作原理 雷达天线把发射机提供的电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波。
这些反射波载有该物体的信息并被雷达天线接收,送至雷达接收设备进行处理,提取人们所需要的有用信息并滤除无用信息。 雷达可分为连续波雷达和脉冲雷达两大类。
单一频率连续波雷达是一种最为简单的雷达形式,容易获得运动目标与雷达之间的距离变化率(即径向速度)。
它的主要缺点是:
①无法直接测知目标距离,如欲测知目标距离,则必须调频,但用调频连续波测得的目标距离远不及脉冲雷达精确;
②在多目标的环境中容易混淆目标;③大多数连续波雷达的接收天线和发射天线必须分开,并要求有一定的隔离度。脉冲雷达 容易实现精确测距,而且接收回波是在发射脉冲休止期内,不存在接收天线与发射天线隔离的问题,因此绝大多数脉冲雷达的接收天线和发射天线是同一副天线。由于这些优点,脉冲雷达(图1)在各种雷达中居于主要地位。这种雷达发射的脉冲信号可以是单一载频的矩形脉冲,如普通脉冲雷达的情形;也可以是编码或调频形式的脉冲调制信号,这种信号可以增大信号带宽,并在接收机中经匹配滤波输出很窄的脉冲,从而提高雷达的测距精度和距离分辨力,这就是脉冲压缩雷达。此外,雷达发射的相邻脉冲之间的相位可以是不相干(随机)的,也可以是具有一定规律的相干信号。相干信号的频谱纯度高,能得到好的动目标显示性能。目标定位 对地面和海面目标定位,就是测量它相对于雷达的距离和方位。对空中目标的定位则需要同时测量距离、方位和高度,这种雷达称为三坐标雷达。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因为电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束来测量。在同样窄的波束条件下,用单脉冲方法可得到比单一波束更高的测量精度(见跟踪雷达)。仰角靠窄的仰角波束测量。根据目标的仰角和距离就能通过计算得到目标高度,精确的仰角同样可用单脉冲方法获得。发射机 它可以是一个磁控管振荡器。这是微波雷达发射机早期的方式,简单的雷达仍在沿用。现代的高性能雷达要求有相干信号和高的频率稳定度。因此就需要用晶体振荡器作为稳定频率源,并通过倍频功率放大链得到所需的相干性、稳定度和功率。放大链的末级功率放大管最常用的是功率行波管或速调管。频率低于600兆赫时,可以使用微波三极管或微波四极管。脉冲调制器 它产生供发射机开关用的调制脉冲。它必须具有发射高频脉冲所需要的脉冲宽度,并提供开关发射管所需的调制能量。使用真空管或晶体管作为放电开关,称为刚管调制;使用氢闸流管对人工线储能作放电开关,称为软管调制。此外,也可用电磁元件作脉冲开关调制。对调制脉冲的一般要求是起边和落边较陡,脉冲顶部平坦。收发开关 它在发射脉冲时切断接收支路,尽量减少漏入接收支路的发射脉冲能量;当发射脉冲结束时断开发射支路,由天线接收的回波信号经收发开关全部进入接收支路。收发开关通常由特殊的充气管组成。发射时,充气管电离打火形成短路状态,发射脉冲通过后即恢复开路状态。为了不阻塞近距离目标回波,充气管从电离短路状态到电离消除开路状态的时间极短,通常为微秒量级,对于某些雷达体制为纳秒量级。天线 雷达要有很高的目标定向精度,这就要求天线具有窄的波束。搜索目标时,天线波束对一定的空域进行扫描。扫描可以采用机械转动方法,也可以采用电子扫描方法。大多数天线只有一个波束,但有的天线同时有几个波束。分布在天线副瓣中的能量应尽量小,低副瓣天线是抗干扰所需要的。接收机 一般采用超外差式。在接收机的前端有一个低噪声高频放大级。放大后的载频信号和本振信号混频成中频信号。模拟式信号处理(如脉冲压缩和动目标显示等)在中频放大级进行,然后检波并将目标信号输至显示器。采用数字信号处理时,为了降低处理运算的速率,应该把信号混频至零中频;为了保持相位信息,零中频信号分解成二个互相正交的信号,分别进入不同的两条支路,然后对这两条支路作数字式处理,再将处理结果合并。 雷达,将电磁能量以定向方式发设至空间之中,藉由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度.并且可以探测物体的形状,以地面为目标的雷达可以探测地面的精确形状。 1922年美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。1924年英国阿普利顿和巴尼特通过电离层反射无线电波测量赛层的高度。美国布莱尔和杜夫用脉冲波来测量亥维塞层。1931年美国海军研究实验室利用拍频原理研制雷达,开始让发射机发射连续波,三年后改用脉冲波1935年法国古顿研制出用磁控管产生16厘米波长的撜习窖捌鲾,可以在雾天或黑夜发现其他船只。这是雷达和平利用的开始。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。英国空军又增设了五个,它们在第二次世界大战中发挥了重要作用。 1937年美国第一个军舰雷达XAF试验成功。1941年苏联最早在飞机上装备预警雷达。1943年美国麻省理工学院研制出机载雷达平面位置指示器,可将运动中的飞机柏摄下来,他胶发明了可同时分辨几十个目标的微波预警雷达。1947年美国贝尔电话实验室研制出线性调频脉冲雷达。50年代中期美国装备了超距预警雷达系统,可以探寻超音速飞机。不久又研制出脉冲多普勒雷达。1959年美国通用电器公司研制出弹道导弹预警雷达系统,可发跟踪3000英里外,600英里高的导弹,预警时间为20分钟。1964年美国装置了第一个空间轨道监视雷达,用于监视人造地球卫星或空间飞行器。1971年加拿大伊朱卡等3人发明全息矩阵雷达。与此同时,数字雷达技术在美国出现。 雷达按照用途可以分为军用雷达和民用雷达,军用雷达包括警戒雷达,制导雷达,敌我识别等;而民用雷达包括导航雷达,气象雷达,测速雷达等。军用雷达 民用雷达天气雷达是探测大气中气象变化的千里眼、顺风耳。天气雷达通过间歇性地向空中发射电磁波(脉冲),然后接收被气象目标散射回来的电磁波(回波),探测400多千米半径范围内气象目标的空间位置和特性,在灾害性天气,尤其是突发性的中小尺度灾害性天气的监测预警中发挥着重要的作用。天气雷达雷达一词来自英语radar,无线电波探测装置。它号称“千里眼”。看到“雷”这个字,马上会让人想到天边的雷鸣和闪电,突出了一个快字。自然,雷达这种“千里眼”的作用也就让人印象更深了。
七、地球的发展经历了哪些阶段?
我们居住的地球上已经有由低级到高级的多种生物生存。这些生物是怎样产生的?显然这是在地球发展到一定阶段才产生的,并且是不断进化的。
在这过程中,生命经历了从低级到高级的演化,一些新的物种产生了,另一些老的物种消灭了。 要了解生命的起源,还应该从地球本身的起源和演化说起。而在考虑这演化过程正如上面所说的不能仅考虑力学,更重要的是化学的演化。
一般说来,原始太阳星云物质分为三大类:"气"、"冰"和"岩石"。"气"主要是氢和氦,约占原始太阳星云重量的98%;所谓"冰",包括碳、氮、氧、氖、硫、氩、氯等(大部分以氢化物形式存在,如甲烷、氨、水、硫化氢、氯化氢等)约占总重量的1·5%;所谓"岩石"包括钠、镁、铝、硅、钙、铁、镍等(大多以硅酸盐和氧化物形式存在)约占总重量的0·5%。
在太阳系形成的过程中,核心因引力塌缩,基本保持了原始太阳星云的成分。
内行星(水、金、地、火)因质量小,温度高,丢失掉了绝大多数的"气",外行星(木、土、天王、海王、冥王)质量大,温度低,但也丢失了一部分的"气"。
在老一点的观点中认为:地球由太阳星云中俘获了氢、氨、甲烷和水而组成了还原性大气。
米勒在1953年作了一个很有名的实验,即在烧瓶中充装了"原始的还原性大气"(氢、甲烷、氨、水)在加热循环的情况下进行了几天到一星期的放电,结果生成了甘氨酸、丙氨酸、谷氨酸等8种氨基酸,此外还有各种有机酸类、尿素等等。
在这个实验之后有更多的科学家进行同类实验。
他们改变着"原始大气"的成分,并且除了放电外还换用了紫外线或辐射射线来进行照射,结果都生成氨基酸,而且种类更多。
另外还有人在高温下使"原始大气"通过二氧化硅(作为催化剂)从而合成出氨基酸的。
米勒等人的实验是在还原性气氛中进行的从而得到了各种氨基酸,后来又有一个著名的实验,是把氨与氰化物在烧瓶中进行回流反应竟然生成了含量较高的腺嘌呤,这是当代生物化学的中心分子。
这许多科学家投入大力进行的科学实验,目的是企图证明在地球的原始气氛中和地球的原始条件下会合成生命的基础?氨基酸以及更复杂的有机分子。
到了60年代,人们对早期地球的认识又有了发展。
天文学家们研究认为原始地球形成后因引力收缩和放射能的积累而升温,地球处于熔融状态,这时原始的星云大气被驱散了,地球不会有含甲烷和氨很多的还原性大气。现在地球的大气是所谓次生大气,是在地球的地幔在漫长时间内形成的过程中排来出的气体,主要是水、氮和二氧化碳。
一个行星要能支持生命就要由地幔中排放出水,生成水圈,而我们地球也正符合这个条件。
水形成后,变成浓厚的水蒸汽又在上空冷却成为雨,暴雨下在刚刚形成的热的地面上又蒸发到上空,就这样水的循环开始了,水侵蚀着地表溶出了各种可溶的物质,形成了原始的海洋。
空中的二氧化碳也溶解到水中又与水中的钙离子反应生成碳酸钙沉淀,沉积下来成为水成岩。但是要形成当前的地球的大气则是在生命产生以后,特别是发生植物的光合作用以后,二氧化碳才被转化成为氧,使大气层变为氧化型的大气,这时高等动物才有了生存的气氛。
在地球演化的模型进一步发展时,同时就出现了一些新的问题,即在原始的还原气氛中形成的有机分子,在热熔的地幔上能否继续存在。
这时,认识又有了突破。50年代开始打开地球大气的另一个窗口,开始了对宇宙空间的射电天文学观测。
60年代天文学的三大发现之一就是观察到星际分子。而最早发现的星际分子是氨,后来是甲醛、接下来有氰化氢、丙炔腈等等,当然还有水、碳氢化合物的自由基等。 另一项研究是对碳质球粒陨石的研究,这是一种含有碳化物的陨石。早期的研究发现其中含有泥炭,铵盐、甚至碳氢化合物,后来对陨石的分析又发现有多种有机化合物。于是就提出生命物质是由陨石带到地球上来的,但是对这些有机化合物是陨石本来就带来的,还是落到地球以后被"污染"上了的,说法不一,就引起了不仃的科学争论。所谓"污染"既包括与地球环境接触后吸附上的有机物,也包括陨石中碳化物与水等反应生成的碳氢化合物。而我们由月球上,和由火星上取样(严格防止"污染"的)分析的结果都是没有生命痕迹的。但是,陨石会带来外空间的有机分子已成为地球上生命起源的假设之一。研究陨石、彗星的化学成分也是探索生命起源的重要途径之一。 根据对地球上的岩石以及化石研究,地球的年龄约为46亿年,大约在40亿年前出现最早的生命?原核类生物,又过了约20亿年,才发展为真核生物,以后进一步演化为无脊椎动物,维管束植物,脊椎动物,直到灵长动物。 至于初始的几亿年,如何由无生命的有机分子形成能自我复制的复杂的有机体--生命。这至今还不是十分清楚,一直是科学家们研究的重要课题。 最后应该提到的是一个传扬以久的"研究成果",那就是前苏联的勒柏辛斯卡娅在1945年提出的"新细胞学说",她说她把水螅磨成浆,离心后,得到的非细胞物质能再培养成细胞,同样鸡的卵黄物质会培养成鸡的内胚层细胞,当然还有鲟鱼等……。1948年十三名苏联科学家联名认为勒柏辛斯卡娅的实验是不科学的,但随即受到了行政压力,他们被迫改变观点或沉默不言。直到1955年才有叶利谢夫教授作了报告,指出勒柏辛斯卡娅的工作全部未被重复。原来这是研究生命起源中的伪科学。 总之,在地球的形成过程中产生了有机分子,可能是在原始气氛中自动形成的,也可能是地球在吸积陨石物质时,由陨石带来的,也可能是碳质球粒陨石投入到地球的原始海洋中,通过化学反应生成的。而这些有机分子在地球的原始气氛中相互组合,终于发展成生命。参考资料:http://www.ocan.com.cn/cssd/guozy-63.htm
八、小说的发展经历了哪些历程?
中国古代小说发展的历史大体是:宋代以前,是文言短简小说的单线发展,如唐代盛行的“传奇”;宋元时代,文言、白话、长篇、短篇、多线发展,呈现出多姿多彩的状态,出现了“话本”这种文学样式;明清时代小说成熟起来,创作出了脍炙人口的四大名著。
九、汉字的发展经历了哪些阶段?
汉字的发展经历了哪些阶段?
汉字的形成与发展,先后大体经历了“古文字”和“今文字”两个阶段。
古文字,若按其字体出现的先后顺序,就已有的记载看,包括了甲骨文、石鼓文、金文和小篆。今文字,则包括了隶书、草书、行书和楷书。其中,隶书是对汉字的重要改革与创新,是“今文字”与“古文字”的分水岭。史称“隶变”。
从魏晋以来,楷书初步形成到唐代定型之后,汉字就一直保持其模样不变。建国后,只对某些字作了些简化工作与合并使用。(宋凤洲)
十、ERP的发展经历了哪些阶段?
ERP的发展经历了以下这些阶段:
1、订货点阶段,当库存量伴随着物料的消耗减少到一定量时,就得下达加工订单或者采购订单,以确定库存量保持在安全库存水平。
2、时段式MRP阶段:在需要的时候提供需要的数量
3、闭环式MRP阶段:以整体生产计划为系统流程的基础,主生产计划及生产执行计划产生过程中均包括能力需求计划,这样使物料需求计划成为可行计划。
4、MRP-Ⅱ阶段:1、计划一贯性与可行性,2管理的系统性,3数据的共享性,4动态应变性,5模拟预见性6、物流、资金流的统一。