316科技

316科技

中国机器人产业规划2016

316科技 259

一、中国机器人产业规划2016

中国机器人产业规划2016

2016年是中国机器人产业发展中具有重要意义的一年。根据中国机器人产业规划2016,我国将继续加大对机器人产业的支持力度,推动机器人技术与产业向高端化、智能化方向发展。

市场发展趋势

根据中国机器人产业规划2016,未来几年,中国机器人市场有望进一步扩大。随着人工智能、大数据等新兴技术的不断发展,机器人应用领域将进一步拓展,包括工业制造、服务行业、农业等各个领域,为机器人产业带来新的增长点。

政策支持措施

为促进中国机器人产业的健康发展,中国机器人产业规划2016明确了一系列政策支持措施。其中包括加大对机器人研发的投入、鼓励企业开展机器人创新设计、支持企业加强智能制造技术应用等方面的政策支持。

产业创新方向

中国机器人产业规划2016的指导下,中国机器人产业将逐步实现由传统制造向智能制造、智能制造向智能化制造的转变。未来,中国机器人产业将更加注重在人工智能、物联网、大数据等领域的应用,推动中国机器人产业向更高端、更智能的方向发展。

技术创新突破

作为中国机器人产业规划2016中的重要内容之一,技术创新被视为推动机器人产业发展的关键。当前,中国机器人产业正加大对核心技术的研发投入,努力实现关键技术突破,提升机器人产品的品质和性能。

国际合作与交流

根据中国机器人产业规划2016,我国将积极推动与国际机器人产业的合作与交流。通过与国际先进机器人企业的合作,我国机器人产业将进一步提升技术水平、拓展市场空间,实现全球资源优化配置。

产业发展挑战

除了发展机遇,中国机器人产业规划2016也明确指出了产业发展面临的一些挑战。包括技术短板、市场竞争激烈、人才短缺等方面的挑战,需要产业各方共同努力,共同应对。

未来展望

综合来看,根据中国机器人产业规划2016的指导,中国机器人产业有望在未来几年内实现快速发展。政府的政策支持、企业的技术创新以及国际合作与交流的促进,将为中国机器人产业带来新的发展机遇,助力中国机器人产业走向世界舞台。

二、机器人路径规划?

Online Generation of Safe Trajectories for Quadrotor UAV Flight in Cluttered Environments

介绍

文章强调无人机轨迹规划重点有三:

  1. 生成的轨迹必须平滑且符合无人机的动力学约束
  2. 整个轨迹,而不是轨迹上的某些点,需要保证是避障的
  3. 整个sensing, mapping, planning的过程必须是满足实时性要求的

文章的主要贡献在于使用minimum snap方法,通过构造带约束的优化问题保证无人机轨迹的动力学约束和平滑。通过使用高效的空间处理方法(基于八叉树地图)来生成飞行走廊,从而处理了无人机可通行区域的问题。并且这个方法是高效的,所以能够实时运行,地图也是在无人机飞行中逐步构建的。下图是最后的算法效果:能够在室外位置环境下进行自主导航和飞行。右侧图的绿色方框就是后面要讲的飞行走廊。

对于飞行走廊,1.2.1节介绍了已有的很多方案,但是都存在计算负荷过大的问题,作者提出了膨胀法形成多个长方体连接而成飞行走廊的思路。对比作者以前提出的方法(文章ref[12]),以及当时的state-of-the-art方案(文章ref[4]),都存在明显的优势。

如上图所示,蓝色的连续方框,是作者在ref[12]中提出的早些方案,明显飞行走廊的空间构造的更加保守,当前方法构造出的橘色方框空间更大,也就意味着飞机有更大的操作空间。而对比ref[4]的方法,也具有明显优势。[4]中,使用了先用RRT*采样出离散点,如图(c)所示,然后用QP的方法将这些点连接成光滑可行的曲线。由于优化问题只存在等式约束,也就是要曲线通过这些个提前固定好的点,所以可以使用闭式求解

的方法,一次性求解结果。这个在论文推土机:Minimum Snap Trajectory Generation and Control for Quadrotors以及提过了,但是很容易想到的问题就是,平滑后的曲线的点,除了通过这些固定点的地方保证安全,其他的位置是有可能存在碰撞风险的。

作者的做法是:做碰撞检测,发现碰撞点后新增加约束点,然后回来继续解优化问题,和上一个优化问题相比,会发生碰撞的位置由于增加了新的位置约束,则不会再发生碰撞了,但是这次优化问题由于约束发生了变化,不保证在别的地方是不是会再发生碰撞,所以有可能又会检测出新的碰撞点,所以需要一次一次不断进行迭代优化,最后到任何点都不发生碰撞为止,可是到底要进行多少次迭代才能够完成优化呢?这里要强调,我们无法证明通过有限次优化能够让所有点避障。这个部分的深入分析我们放到对ref[4]的解析中再讲,完成本文时还没写。最后文章给出算法框架:

基于八叉树的地图表示

这部分涉及地图,或许应该放在另一个专栏中?

飞行走廊的生成

这部分介绍飞行走廊的生成。飞行走廊的好处很明显:空间上的约束,可以直接去构建,但问题可能是非凸的,或者构造出非线性优化问题,这会影响计算的实时性。通过构建飞行走廊,将位置约束变成凸空间,这样施加在优化问题上,优化问题仍然是凸优化,能够通过高效的求解方法进行求解。 飞行走廊被定义成 ,它由一系列的空间组成 ,每个空间是一个长方体,所以空间有三个维度,每个维度被其上下界所约束: .飞行走廊的生成有两部分组成,首先进行初始化,然后进行后处理。

第一步,使用A*算法进行初始化(当然,完全可以使用考虑动力学约束的混合A*搜索算法)。空间地图使用八叉树地图进行构造,使用A*算法进行搜索,找到连接起点和终点的一系列grids. 这些grid是避障的,联通的。在3.1.3节,作者强调了最优性和效率之间的平衡。由于空间的稀疏性,再使用A*搜索过程中我们通过减小heuristic的估计来让A*算法更加贪心,但由于破坏了最优性原则,这很可能让A*算法搜索出来的结果不是全局最优,就如下图中的绿色方块所示。但是由于在第二步膨胀过程中,我们会膨胀绿色方块获得最优的飞行走廊,这也在一定程度上弥补了A*搜索结果不是全局最优的问题。因为与全局最优结果相近的次优搜索结果,通过第二步膨胀后,或许会几乎相同。

接下来第二步是膨胀:由上面A*搜索出来的结果作为初始化飞行走廊显然还没有完全利用到周围的free space

, 在这个飞行走廊附近依旧有很大的拓展空间,通过向各个方向进行膨胀,一直膨胀到碰到障碍物位置,以此获得更大的通行区域,如下如所示,蓝色方块是初始化的结果,绿色虚线方块是膨胀后的结果,右图中的橘色区域则是连续膨胀方块间的重叠区域,这也是接下来轨迹规划

的时候的空间位置约束,要求两个segments之间的切换点的位置必须被约束在这个重叠区域之内。

在Fig.1.2中也就是下图,我们可以明显的看到,重叠区域是非常大的,在进行轨迹规划时,我们只要求segment

之间的切换点被约束在重叠区域内即可,这其实是implicit time adjustment. 因为通过调节切换点的位置,也就起到了调节轨迹长度和轨迹形状的作用,从一定角度来讲就是在做time adjustment

的过程。原文的描述在3.2和3.3中。

这里是截图原文的描述:

基于样条曲线的轨迹生成

这部分介绍轨迹规划。这部分的轨迹生成

算法在ref[12]中首次提出(完成本文时对应论文解析还未完成,后续链接),在这里面针对时间分配问题有一些新思路,通过增加有限个新约束(在违反无人机动力学约束发生时),能够被证明整个曲线可以被完成约束在设定的动力学约束之内。这部分也是文章的核心部分,可以看下原文chapter4的截图:

我们跳过无人机的动力学分析,直接接受结论:四旋翼无人机具备微分平坦的特性,具体说来就是其状态和控制的输入能够被四个输出及其导数确定。这是我们能够运用基于minimum snap方法的前提条件。多段拼接的轨迹由以下表达式组成:

cost function为:

以上表达意为整条曲线又M 段 N阶多项式拼接而成,目标函数是整条曲线的某阶导数(minimum snap取jerk, 也就是3阶导数)。在这里,目标函数被构造成二次型:

其中,等式约束和不等式约束均可被写成线性函数。具体来说,约束包括动力学约束(速度,加速度,jerk等),位置约束,通过corridor constraints给出,也就是上面说到的飞行走廊,最后还有连续性约束,也就是连续两条曲线的切换点至少N-1阶连续,N是每条曲线的最高次。对于位置约束,上面已经说过,切换点的位置被约束在对应的方块的重叠区域之内:

但是,注意到这个约束只是保证了切换点的安全,并没保证其他时间点上的点是不是安全的,避免碰撞的。所以这里作者给出了一个新算法来保证整条曲线都是避障的,如下图所示:

  1. 首先进行一次优化求解,然后得出结果。
  2. 对每一段N阶曲线去查看它的N-1的极值点,来检查是不是在对应的飞行走廊的方块内。
  3. 如果出现violation,违反约束的情况,在那个违反约束的时间点上,新增位置约束,具体做法就是对这个位置的上下边界压缩
  4. 然后构造出新的优化问题继续求解,这里新的问题与老的优化问题的唯一区别是更新了约束。

新的约束为:

注意到,尽管这个loop内的极值点不一定是下一个loop的极值点,但是作者通过证明发现能够通过有限次的约束更新,将整条曲线限制在安全区域之内,这个和ref[4]中的处理碰撞问题的方法相比就有很大优势,毕竟后者是内有办法确保迭代能够在有限次约束更新内完成的。具体的theory部分见文章4.2.1节(Page.25).

进一步的,如果需要约束更高阶的导数,如速度,加速度,以及jerk等,也可以通过同样的方法进行约束,比如说还想约束速度,那么获得速度表达式后:速度的表达式是N-1阶,那么就有N-2个极值点,找到极值点是否符合动力学约束,如果不符合,用一样的方式,在极值点处施加新的约束,然后继续回去进行下一轮优化。

三、机器人路径规划算法?

路径规划其实分为两种情况,一个是已知地图的,一个是未知地图的。  对于已知地图的,路径规划就变成了一个全局优化问题,用神经网络、遗传算法有一些。  对于未知地图的,主要就靠模糊逻辑或者可变势场法。  对于未知环境能自己构建地图的,也就是各种方法的结合了。

四、中国最大填海规划?

曹妃甸吹沙造地工程是我国规模最大的填海造地工程。按照规划,曹妃甸需填海建设的总面积达310平方千米(超过上海临港新城项目,相当于20个澳门的面积)。?  曹妃甸地处唐山南部的渤海湾西岸,位于天津港和京唐港之间。“面向大海有深槽,背靠陆地有滩涂”,是曹妃甸最明显的特征和优势,为大型深水港口和临港工业的开发建设,提供了得天独厚的条件。

五、救火机器人创业规划书?

1 是必要的。2 救火机器人的创业规划书可以明确目标和方向,创业的原因和目的。它可以包括市场调研、竞争分析、产品定位、市场推广、财务规划等内容,帮助创业者更好地规划和管理创业项目。3 此外,还可以延伸到技术研发、人才招聘、合作伙伴寻找、风险管理等方面,为创业者提供全面的指导和支持。它是一个重要的工具,可以帮助创业者在竞争激烈的市场中取得成功。

六、AGV机器人路径规划实验步骤?

步骤:

1、对机器人的速度进行离散采样。

2、对于每个采样后的速度,用当前的位置信息去模拟一段时间后小车的速度

3、从向前的运动过程当中,评估每条运动的轨迹。使用不完整的度量,例如,接近障碍物,接近目标,接近全局规划的路径和速度。抛弃原有的存在问题的路径。

4、选择一条得分较高的路径,并且给底盘发布速度。

5、清除和重复。

DWA算法,就是说,当你需要障碍物的时候,给你画一个圆,然后让机器人按照这个圆走。

七、中国最先规划的地铁?

中国北京市是最先建成地铁的。

北京地铁(Beijing Subway)是服务于中国北京市的城市轨道交通系统。其规划始于1953年,工程始建于1965年,最早的线路竣工于1969年,1971年开始运营,是中国的第一个地铁系统。

截至2016年12月31日,北京地铁共有19条运营线路(包括18条地铁线路和1条机场轨道),覆盖北京市11个市辖区,拥有345座运营车站(换乘车站重复计算,不重复计算换乘车站则为288座车站)、总长574千米运营线路的轨道交通系统。

北京地铁标识(LOGO)为标准色蓝色,寓意朝气、时尚、宽阔、稳重;象征充满生机,体现与时俱进,彰显创造精神,沉淀忠实奉献;体现北京地铁近半个世纪以来从无到有、从线到网的发展历程;体现北京地铁人高度负责、联动高效、永攀高峰的时代精神。

八、中国规划最好的城市?

苏州是中国城市规划最好的城市,是全球首个“世界遗产典范城市”。苏州园区是邓小平南下讲话新加坡国父李光耀访华的时代产物,公认的国际花园城市新加坡做的城市规划,一直施行规划大于市长的原则,凭借园区苏州获得了亚洲首个“李光耀世界城市奖”。

而且据知,苏州是国内唯一在原址上完整的继承保护了古城的城市,苏州古城的位置至今未变,与宋代苏州《平江图》相对照,总体框架、骨干水系、路桥名胜基本一致,这在世界上都是罕见。

九、中国机器人之父?

中国的机器人之父,他就是大名鼎鼎的蒋新松。他是我们国家863计划自动化领域的首席科学家,蒋新松桌有成效的,指挥了计算机集成系统的制造。在他的带领下,我们国家的这个技术啊,进入了国际先进行列。蒋新松曾经说过,生命总是有限的,但是让有限的生命发出更大的光和热,让生命更有意义,这是我的夙愿。我只讲生命的质量,不求生命长短的数量活着干死了算。很遗憾我们科学家他已经于1997年3月30日去世了,怀念他。

十、中国机器人起源?

我国工业机器人起步于70年代初期,经过20多年的发展,大致经历了3个阶段:70年代的萌芽期,80年代的开发期和90年代的适用化期。

1、70年代是世界科技发展的一个里程碑:人类登上了月球,实现了金星、火星的软着陆。我国也发射了人造卫星。世界上工业机器人应用掀起一个高潮,尤其在日本发展更为迅猛,它补充了日益短缺的劳动力。在这种背景下,我国于1972年开始研制自己的工业机器人。

2、进入80年代后,在高技术浪潮的冲击下,随着改革开放的不断深入,我国机器人技术的开发与研究得到了政府的重视与支持。

“七五”期间,国家投入资金,对工业机器人及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发,研制出了喷涂、点焊、弧焊和搬运机器人。

1986年国家高技术研究发展计划(863计划)开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。

3、从90年代初期起,我国的国民经济进入实现两个根本转变时期,掀起了新一轮的经济体制改革和技术进步热潮,我国的工业机器人又在实践中迈进一大步,先后研制出了点焊、弧焊、装配、喷漆、切割、搬运、包装码垛等各种用途的工业机器人;

并实施了一批机器人应用工程,形成了一批机器人产业化基地,为我国机器人产业的腾飞奠定了基础。

上一个下一篇:包装公司,包装贷款可靠吗?

下一个上一篇:返回栏目